Chapter 3

Vanishing and Kodaira
embedding theorem

3.1 Bochner methods and vanishing theorem

For a vector bundle E over a Riemannian manifold M with a connection
V¥, by taking a locally orthonormal basis, the usual Bochner Laplacian A¥
is defined by

dimp M

I ((ij.)2 - Végjxej) . (3.1.1)

J=1

We assume that the vector bundle E admits a Euclidean metric if it is
real or a Hermitian metric if it is complex. We denote the corresponding

metric by (-,-). We assume that the connection V¥ preserves the metric on
E.
For s1,s9 € €°°(M, E') with compact support, we have

dimRM
/(AEsl,SQ)dv: Z /(Vgsl,vg.92>dv—/ tr(Va)dv
M = Jm M

dimg M

— Z /(Visl,Visg>dv:/ (51, APsy)dv, (3.1.2)
j=1 M M

where a(Y) = (VEsy, s9).

Lemma 3.1.1. Let V' be a real vector space with basis e;. For any A €
End(V'), there exists a unique endomorphism \(A), which is called the deriva-
tion, on AV, such that it coincides with A on V' and satisfies the Leibniz’s
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68 CHAPTER 3. VANISHING AND EMBEDDING

rules:
A(A)(a A b) = A(a) Nb+ a N A(D), (3.1.3)
where a,b € AV. Explicitly, it is given by
MA) = (&7, Aer)e; A, - (3.1.4)

Proof. The uniqueness is obvious. We only need to prove that (3.1.4) is
a derivation. Firstly, for e, € V, we have M(A)ey, = (&7, Aep)e; = Aey.
Secondly, the operator e; A 4., satisfies the Leibniz’s rule (3.1.3).

The proof of our lemma is completed. O

Theorem 3.1.2 (Weitzenbock’s formula). Let R be the curvature of the Levi-
Civita connection on TM. Then

(d+d)? = AMM =N " Ripe® Nige! N, (3.1.5)
ijkl

In particular, on the space of one forms, we have
A = (d+d*)? = AM™M 4 Ric(e;, e5)e’ A, (3.1.6)

Proof. Let VAT™M be the connection on AT*M induced by the Levi-Civita
connection V. Let RM™M be the curvature of VAT From (2.2.61) and
(2.2.62), we have

d=e NVETMdr = =i VATV (3.1.7)

J

Since the formulas (3.1.5) and (3.1.6) do not depend on the choice of the
locally orthonormal coordinates. We choose the normal coordinates. Notice
that

€' Nie, +ic,e' A =05 1d. (3.1.8)
We have
dd* + d*d = —e' Nig, VO MM — g et AT AT
= —VATMGATM _ RAT"M (¢, e;)e' N, (3.1.9)

Let R™ be the curvature of the Levi-Civita connection V. It is easy to
see that RATM s the derivation of RT M. By (3.1.4), we have

RN = (o, BTV Ny = (R™ e o) Nie. (3110)
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Combining (3.1.9) and (3.1.10), we have
dd* + d*d = AM™M — Ryjue® Niget N, (3.1.11)
From (3.1.8), we have

Rijklek A ielei N iej = —Rijklek A ei VAN ieliej + Rijkiek N iej
= —Rijie® A€’ Nigie, — Ric(e;, ej)e’ N, (3.1.12)

Notice that the first term on the right-hand side vanishes on one forms. Then
we get (3.1.6).
The proof of our theorem is completed. O

Definition 3.1.3. A function (resp. a twofold symmetric covariant tensor,
etc) on a manifold is quasi-positive if it is everywhere nonnegative (resp.
positive semi-definite, etc) and is positive (resp. positive definite, etc) at a
point. Quasi-negativity is dually defined.

Theorem 3.1.4 (Bochner 1946). For a compact orientable Riemannian man-
ifold M of nonnegative Ricci curvature, its first Betti number by < dim M,
with the upper bound attained by the flat torus. If the Ricci curvature is
quasi-positive, then by = 0.

Proof. From (3.1.2), for any a € Q'(M), then

dimg M
/ (AN Mo aydy = Y [VAT M2 > 0. (3.1.13)
M =1

If the Ricci curvature is quasi-positive, there exists x € M such that a =0
on a neighbourhood of z. Since

/M<Ric(ei, ej)e’ A ie; 0 )dv > 0, (3.1.14)

by (3.1.6) and (3.1.13), we have VAT "Mq = 0. So o = 0. Thus ker Ag = 0.
From the Hodge theorem 2.2.6, we have b; = 0.
If the Ricci curvature is nonnegative, we have

/ (Ric(e;, e5)€’ Aie;a, aydv > 0. (3.1.15)
M

If a € ker A, from (3.1.6), (3.1.13) and (3.1.15), we have VAT Mq = (. For
any x € M, we have

b < dimg{a, : VA Mo = 0} = dimg M. (3.1.16)

Notice that for torus 7", H*(T",R) = H'(S',R)®" = R". Thus the proof of
our theorem is completed. O



70 CHAPTER 3. VANISHING AND EMBEDDING

Now we consider the Kahler case.

Let (M,w) be a compact orientable Kéhler manifold. Let F be a Hermi-
tian holomorphic vector bundle over M with Hermitian connection V¥. We
simply denote by A% the Laplacian with respect to the connection VAT M®E
induced by the connections V7'M and VE. Recall that K%, = A"(T*0M)
and

tr [RTI’“M] _ RKir — —/“TRic, . (3.1.17)

Theorem 3.1.5 (Bochner-Kodaira). Let E' be a Hermitian holomorphic vec-
tor bundle over the Kahler manifold M. In a local holomorphic coordinate
system,

_ _ 1 1 _
DE = (8E + 8E’*)2 = §A0’A — §RE(91, (91)

. (RE Lo [RTLOMD (60,808 Nig. (3.118)

Proof. By Theorem 1.2.15, we could choose the normal holomorphic coordi-
nates. In this coordinates around = € M, we have [V, ig] = [V,0"A] = 0
and [0;, ;] = V.0 — Vg, 0; =0 at z.

By (2.2.72) and (2.2.73), 9% = I AVAT P MEE and 9P+ = —ig VTV MEE,
We simply denote by V% := VATCDMGE Thyg

JEGE* 1 GEGE — @i A Z'ékvg’.'vg;; — z'e-k&_j A Vg;Vg’_'
= (07 Nig, +ig 07 A)VS;’V%;' — 07 Nig, (vgjvgk — VS;V%)
_ _vg;‘vg_;' + RP(64,0,)i5, + RT"M(6,,0,)045,. (3.1.19)

By (2.2.71),

2n n n n
SOV =S (VoYY Ve ) =2 ViV = 3T R (6,6,),
i=1 i=1 i=1 i=1

(3.1.20)

Since we choose the normal coordinates for Kéhler manifold, by (2.2.71),
S Ve =YL, VK0 + 2L, Vg, i = 0. So

1 1 — 1 0,% ~
VGV =AY — SRE(6,6) — SRV (0,0, (3.1.21)
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From Lemma 3.1.1,
RATTM — (g, RTVUMENG N i = g(RE,, 6)F" A g, (3.1.22)
Thus
RT""M(0,.0,)07 15 — %RTO’*M(G,;, 0;)
= —Ry;0' Nig 07 Nig, + %Rﬁsl—el Nig, (3.1.23)
By Bianchi Identity, Rz + Ry57 + Ri50 = 0. Since Rgz7 = 0, we have
Ryji = R (3.1.24)
As in (3.1.8), we have
0" Nig, +ig,0' A = bi; 1d . (3.1.25)
So
Rzl Nig, 0 Nig, = Ry550' Nig 07 N g,
= — Ry Nig. 07 Nig, + Rig;00' Nig, + Ry540' Nig, (3.1.26)
It implies
—Ry5q0' Nig,07 Nig, = —Rj540' Nig,. (3.1.27)

Recall that in (2.1.56), we get

tr[RT"M] = R¥4 = Ric,, . (3.1.28)
Since
—Rj;5q = —Ry;5 = g(R(0,,0)0;,0;) = tr[RT"M](0,,0,), (3.1.29)
We obtain the theorem.
Our proof of the theorem is completed. O

Theorem 3.1.6. On a compact Kdhler manifold M with quasi-positive bi-
sectional curvature, we have h*!' = 1.



72 CHAPTER 3. VANISHING AND EMBEDDING

Proof. In this case, £ = A(T*0M). We have

RMTUOM) (g 9y = R0l Adg, (3.1.30)
and
RMT™UM) (g, 600" A ig, = Rypst Nig,0° Nig,. (3.1.31)
Thus by (3.1.18),
E 1 0. 1 1 . ! - nk . 1 nk ;
D% = 5A% = =5 Rt Ao, + Rjpst Nig, 0" Nig, — 5 Ryt Nig,.
(3.1.32)

For harmonic real (1,1)-form a, if we write v = Y7, - ;6" A 67, we have

> ayt NG =a=a=a;0 N0’ ==Y a0 A0 (3.1.33)
i\ i\j

Thus after an orthogonal transform, we could assume that a could be written
as o = Y, v/—1a;0" A 6" where o is a real-valued function. From (3.1.32),
we have

V-1

%?&mew.
(3.1.34)
Taking the conjuation,
V—1Ryz000" N O* = V/—1Rg000" N ' = —/—1R,z50,.0' A 0"
= V/—1Ryz0060' N OF = /—1Rjpz000" A GF. (3.1.35)
So we have

] _ _
§A°"a = V=1Rgzad' N 6* — V=1Rz0.6' N 6. (3.1.36)

From (3.1.2) and (3.1.24), for harmonic real (1, 1)-form «, we have
S I9%alf, = - [ Raal + 2Riggaicn)de
p M

= —/ Rii(oi — a)?dv.  (3.1.37)
M

If the bisectional curvature is quasi-positive, we have o; = oy, for any 7, k.
Thus a = ¢ - w, where ¢ is a real-valued function. Since Vg;'a = 0, we see
that ¢ is a constant. Thus h! = 1.

The proof of our theorem is completed. O
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In general, a markable extension of Theorem 1.3.16 (Siu-Yau, Mori) exists.

Theorem 3.1.7 (Mok 1988). A compact Kdhler manifold with quasi-positive
bisectional curvature is btholomorphic to complex projective space.

Theorem 3.1.8. For negative holomorphic line bundle L over complex man-
ifold M, we have H*(M,L) =0 for p > 0.

Proof. Take E'= L in (3.1.18). If L is negative, by Definition 2.1.18, we have
RE(6;,0;) = /—1RE(6;,J6;) < 0. Following the same arguments, we get our
theorem. O

Theorem 3.1.9. Let (M,w) be a compact Kdhler manifold such that Ric,
is quasi-positive. Then h?° =0 for any p > 0.

Proof. Let a be a harmonic (p, 0)-form. Then by Theorem 3.1.5and (3.1.22),
A% q = RATOMY (g 9o = Ryt Adg.cx (3.1.38)

From Definition 2.1.18, if Ric, is quasi-positive, then Ric,(-,J-) is quasi-
positive. From (1.3.17),

Ric,,(6;, J0,) = —v/—1Ric,(0;,0,) = Rz = —Ris. (3.1.39)

So for any [,s, R;;s is quasi-negative. So fM<RZ-gl§6l A dg,cr, ) < 0. Since
[ (A% @, ) >0, we see that o = 0.
The proof of our theorem is completed. O

Corollary 3.1.10 (Kobayashi). A compact connected Kihler manifold with
positive Ricci curvature is simply connected.

Proof. Since h?4 = h%P we see that for any p > 0, h% = 0. Notice that
the only holomorphic functions on connected compact complex manifold are
constants. Thus h%% = 1. So xo(M) = > (—=1)Ph%? = 1.

=0

From the Myer’s theorem, since M ispcompact and the Ricci tensor has
the positive lower bound, the fundamental group 71 (M) is finite. Let M be
the universal cover of M. Then M is compact with positive Ricci curvature.
It implies that xo(M) = 1. We lift the geometric structure of M onto M.

Then we have
/ TA(TEOM) = |7y (M) / Td(THO M), (3.1.40)
M M
From the Hirzebruch-Riemann-Roch theorem,
/~ TA(THOM) = xo(M) =1 = xo(M) = / TA(TTOM).  (3.1.41)
N M

So we get m (M) = 1.
The proof of our corollary is completed. O
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Corollary 3.1.11. Fano manifolds are simply connected.

Proof. Let M be a Fano manifold. Then ¢;(M) > 0. From the Calabi-Yau
theorem 2.1.17, there exists a Kahler form w such that Ric, > 0.
The proof is completed. O

Theorem 3.1.12 (Nakano’s inequality). For holomorphic vector bundle E
over a compact Kihler manifold M, and any s € Q" (M, E),

(OFs,8)p > ([V—1RF A]s, s) . (3.1.42)
Proof. By Bochner-Kodaira-Nakano formula Theorem 2.2.23,

(O, s)p = [[07s][72 + (107" s]|7.
= [[(VE)"0s] 132 + (V)" %s]|32 + (V=1[R", Als, s)p. (3.1.43)
The proof of our theorem is completed. O

Theorem 3.1.13. Let M be a compact complex manifold of complex dimen-
sion n and L be a positive holomorphic line bundle over M. Then
(a) (Kodaira vanishing theorem) if ¢ > 0

HY(M,L® Ky) = 0; (3.1.44)

(b) (Nakano vanishing theorem) if p+q > n,

HP(M,L) =0. (3.1.45)
Proof. Since L is positive, w = %RL is a positive (1, 1)-form. Let g7 be

the associated Kihler metric on TM. As w = /—16° A 0%, by (2.2.92), we
have

[w, A] = 6" Adg, —ig, 0" A (3.1.46)
Thus for s € QP¢(M, L), we have
[w,Als = (p+q—n)s. (3.1.47)

Then the Nakano’s inequality Theorem 3.1.12 implies that if (%s = 0, it
follows that s = 0 whenever p + ¢ > n. By Hodge theorem for holomorphic
vector bundle AP(T*BOM) ® L, we get (b). (a) is a case of (b) for p = n.

The proof of our theorem is completed. O
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Theorem 3.1.14 (Kodaira-Serre vanishing theorem). Let L be a positive
holomorphic line bundle and E be a holomorphic vector bundle. Then there
exists po > 0 such that for any p > po,

HI(M,[?P®@ E)=0 for any q > 0. (3.1.48)

Proof. From (3.1.19), for any s € &,5;Q%(M,LP @ E),

n
(OV5s, ) = |97 “Fs |2, + |92 55|12, = S |0y 52,
=1

+ (REEE(0;,0,)0" Nig s, s) + (RATVM(0;,0,)0% Nig s, s)
> p(RE(0;,00)0" Nig s, s) + (RN VMEE (G, §,)0% Nig s, s). (3.1.49)

We identify the two form R” with the Hermitian matrix R* € End(T09 M)
such that for X, Y € TU0 M,

RE(X,)Y) = (REX)Y). (3.1.50)
After an orthogonal transform, we could assume that
RL(z) = diag(ay(z), -+ , an(x)) € End(T8HOM). (3.1.51)

Since L is positive, for any € M and 1 < j <n, a;(x) > 0. So there exists
Cp > 0 such that

(R™(0;,0,)0% N ig,S, S) = <Z a;(z)0 A ig,S, S) > Collsll7, (3.1.52)
J
Thus from (3.1.49) and (3.1.52), there exists C; > 0 such that
(O ®Fs, s) > (Cop — C1)||s]13,.- (3.1.53)

If p is taken large enough such that Cop — C; > 0, we have ker JF'®F = (.
From the Hodge theory, we obtain the Kodaira-Serre vanishing theorem. [J

For complex manifold, we also have the corresponding Bochner-Kodaira
type formula. We only state here without proof.

Let M be a compact complex manifold and E be a holomorphic vector
bundle over M. There are two natural connections: Levi-Civita connection
V and Chern connection V. If the manifold is Kéahler, they are equal.

Set

S:=V-V. (3.1.54)
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Take S? € Q' (M, End(T'M)) such that
VI

g(SHOW, W) = —=—=((0 = 9)w) (U, V, W) (3.1.55)
for any U,V,W € TM. The Bismut connection VZ on T'M is defined by
V=V +8P=V+58-8. (3.1.56)

Remark that the Bismut connection preserves the complex structure. Thus
it induces a natural connection V? on A(T*OVN). Let VBA yBA»eE
be the connections on A(T*®V M), A(T*OV M) ® E defined by

VEBAY = B 4 (5(:)6;,0,), (3.1.57)
VBAYCE _ yBA™ o1 1 | g VE. (3.1.58)

For any v € T M with the decomposition v = v"0 + 0% € TGO N & TOD N

let o1%* be the metric dual of v'°. Then we set
c(v) == V2(T"* A —iyo1) € End(A(T* OV M), (3.1.59)
We verify easily that for U,V € T'M,
c(U)e(V)+ce(V)e(U) = —2¢9(U, V). (3.1.60)

For a skew-adjoint endomorphism A of T M, from (3.1.59), we could calculate

that
1 1 - S
ZQ(A% ej)c(er)c(e;) = —59(1493'7 0;) + g(Aby, 0,)0™ A g,

+ %g(A@l, Om)ig ig,, + %g(AHl, O )ig ig, 0" AO™ A . (3.1.61)
For 7; < --- <i;, we define
‘(e A NeY) = cle) - cle,). (3.1.62)
Then by extending C-linearly, °A is defined for any A € A(T*M ®g C).

Theorem 3.1.15 (Bismut’s Lichnerowicz formula). Let ABA"®E pe the
Laplacian of VBA"9E a5 in (3.1.1). Let r™ be the scalar curvature of M.
We have

_ _ ) M 1 )
QDE:2(8E+8E,*)2:AB,A0’®E‘+TT+ C(RE+§1}I' [RT ,OM:|>

+ g “(00) — 510~ Dl (3163

Remark that it generalises the Bochner-Kodaira for Kahler case.



